Frequent Itemset Mining in Transactional Data Streams Based on Quality Control and Resource Adaptation

نویسندگان

  • J. Chandrika
  • Ananda Kumar
چکیده

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams.Further the usage of memory resources should be taken care of regardless of the amount of data generated in the stream. In this work we extend the ideas of existing proposals to ensure efficient resource utilization and quality control. The proposed algorithm RAQ-FIG (Resource Adaptive Quality Assuring Frequent Item Generation) accounts for the computational resources like memory available and dynamically adapts the rate of processing based on the available memory. It will compute the recent approximate frequent itemsets by using a single pass algorithm. The empirical results demonstrate the efficacy of the proposed approach for finding recent frequent itemsets from a data stream.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Algorithms for Mining Frequent Itemset Over Data Stream

Frequent itemset mining over dynamic data is an important problem in the context of data mining. The two main factors of data stream mining algorithm are memory usage and runtime, since they are limited resources. Mining frequent pattern in data streams, like traditional database and many other types of databases, has been studied popularly in data mining research. Many applications like stock ...

متن کامل

A false negative approach to mining frequent itemsets from high speed transactional data streams

Mining frequent itemsets from transactional data streams is challenging due to the nature of the exponential explosion of itemsets and the limit memory space required for mining frequent itemsets. Given a domain of I unique items, the possible number of itemsets can be up to 2 1. When the length of data streams approaches to a very large number N, the possibility of an itemset to be frequent be...

متن کامل

Resource Adaptive Technique for Frequent Itemset Mining in Transactional Data Streams

MCE Hassan SJBIT Bangalore Summary Mining Frequent itemsets from transactional data streams is a very challenging task as it has to handle continuous, unbounded, and ordered sequence of data elements generated at a rapid rate in a data stream. In order to enhance the analysis of stream data it is essential to extract frequent itemsets from more recent data. For this purpose a sliding window mec...

متن کامل

Mining Data Streams under Dynamicly Changing Resource Constraints

Due to the inherent characteristics of data streams, appropriate mining techniques heavily rely on window-based processing and/or (approximating) data summaries. Because resources such as memory and CPU time for maintaining such summaries are usually limited, the quality of the mining results is affected in different ways. Based on Frequent Itemset Mining and an according Change Detection as se...

متن کامل

An Efficient Incremental Algorithm to Mine Closed Frequent Itemsets over Data Streams

The purpose of this work is to mine closed frequent itemsets from transactional data streams using a sliding window model. An efficient algorithm IMCFI is proposed for Incremental Mining of Closed Frequent Itemsets from a transactional data stream. The proposed algorithm IMCFI uses a data structure called INdexed Tree(INT) similar to NewCET used in NewMoment[5]. INT contains an index table Item...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012